Журнал «Боль. Суставы. Позвоночник» Том 15, №4, 2025
Вернуться к номеру
Інтегративна нутрицевтична стратегія використання незамінних амінокислот у регуляції запалення, стресу та болю (огляд літератури)
Авторы: Рекалов Д.Г. (1), Орос М.М. (2), Акімов О.Є. (3), Горошко В.І. (4), Костенко В.Г. (3), Нестуля К.І. (3), Костенко В.О. (3)
(1) - Національний науковий центр «Інститут кардіології, клінічної та регенеративної медицини імені академіка М.Д. Стражеска НАМН України», м. Київ, Україна
(2) - Ужгородський національний університет, м. Ужгород, Україна
(3) - Полтавський державний медичний університет, м. Полтава, Україна
(4) - Національний університет «Полтавська політехніка імені Юрія Кондратюка», м. Полтава, Україна
Рубрики: Ревматология, Травматология и ортопедия
Разделы: Клинические исследования
Версия для печати
Актуальність. Хронічне низькоінтенсивне запалення (ХНІЗ) є ключовим патофізіологічним механізмом, який лежить в основі широкого спектра сучасних мультифакторних захворювань, включаючи депресію, тривожні розлади, метаболічний синдром, остеоартрит і хронічний біль. Актуальність пошуку нових інструментів для метаболічної регуляції запалення, нейроімунної взаємодії та зменшення больового навантаження постійно зростає. Мета: оцінити патогенетичну роль незамінних амінокислот (НАК) у механізмах ХНІЗ, стресових і больових розладів, а також обґрунтувати ефективність їх інтегративного нутрицевтичного застосування у складі комплексної терапії. Матеріали та методи. Виконано систематичний аналіз наукових публікацій, включаючи експериментальні та клінічні дослідження, огляди, метааналізи та довідкові джерела з баз даних PubMed, Scopus, Web of Science та Cochrane Library за 2010–2025 роки. Результати. L-триптофан, метіонін, розгалужені амінокислоти, лізин, фенілаланін і треонін багатовекторно впливають на регуляцію імунної відповіді, епігенетичні механізми, нейромедіаторний баланс і оксидативний гомеостаз. Поєднання НАК може вважатися патогенетично обґрунтованим підходом у комплексній нутрицевтичній терапії станів, що супроводжуються ХНІЗ, нейроендокринною дизрегуляцією та больовими синдромами. Біохімічна комплементарність і функціональна взаємодія цих амінокислот забезпечує багатовекторний вплив на провідні механізми цих патологічних процесів. Висновки. НАК відіграють важливу роль у регуляції ХНІЗ, стресових розладів та хронічного болю завдяки своїм метаболічним, нейромодуляторним і імунорегуляторним властивостям. Синергія НАК в одному нутрицевтичному комплексі забезпечує багатовекторну дію — від модуляції серотонінового та кінуренінового метаболізму до регуляції епігенетичних процесів, антиоксидантного захисту, функції кишкового бар’єра та енергетичного обміну, що є особливо цінним при мультифакторних патологічних станах. Інтегративна нутрицевтична стратегія із застосуванням НАК у поєднанні з вітамінними кофакторами має перспективи клінічного впровадження як допоміжний підхід до корекції запальних, психоемоційних і метаболічних розладів, особливо в умовах нутрієнтного дефіциту, мультиморбідності та стрес-індукованої дизрегуляції.
Background. Chronic low-grade inflammation (CLGI) represents a key pathophysiological mechanism underlying a broad spectrum of contemporary multifactorial disorders, including depression, anxiety disorders, metabolic syndrome, osteoarthritis, and chronic pain. The demand for novel tools for metabolic regulation of inflammation, neuroimmune interaction, and reduction of pain burden is steadily increasing. This study purpose was to evaluate the pathogenetic role of essential amino acids (EAAs) in the mechanisms of CLGI, stress-related, and pain disorders, and to substantiate the efficacy of their integrative nutraceutical use within comprehensive therapeutic strategies. Materials and methods. A systematized analysis of scientific literature was performed, including experimental and clinical studies, reviews, meta-analyses, and reference sources from the PubMed, Scopus, Web of Science, and Cochrane Library databases, covering the period from 2010 to 2025. Results. L-tryptophan, methionine, branched-chain amino acids, lysine, phenylalanine, and threonine exert multifaceted effects on immune response regulation, epigenetic mechanisms, neurotransmitter balance, and oxidative homeostasis. The combined use of EAAs can be considered a pathogenetically justified approach in the comprehensive nutraceutical therapy of conditions associated with chronic low-grade inflammation, neuroendocrine dysregulation, and pain syndromes. The biochemical complementarity and functional interaction of these amino acids provide a multidirectional impact on the key mechanisms underlying these pathological processes. Conclusion. EAAs play an important role in the regulation of CLGI, stress disorders, and chronic pain due to their metabolic, neuromodulatory, and immunoregulatory properties. The synergistic combination of EAAs in a single nutraceutical complex ensures a multidirectional action ganging from modulation of serotonin and kynurenine metabolism to regulation of epigenetic processes, antioxidant defense, gut barrier function, and energy metabolism, which is particularly valuable in multifactorial pathological conditions. An integrative nutraceutical strategy utilizing EAAs in combination with vitamin cofactors holds promise for clinical implementation as an adjunctive approach to correct inflammatory, psychoemotional, and metabolic disorders, particularly under conditions of nutrient deficiency, multimorbidity, and stress-induced dysregulation.
незамінні амінокислоти; нутрицевтики; хронічне низькоінтенсивне запалення; стрес; біль; нейроімунна регуляція; огляд
essential amino acids; nutraceuticals; chronic low-grade inflammation; stress; pain; neuroimmune regulation; review
Для ознакомления с полным содержанием статьи необходимо оформить подписку на журнал.
- Tristan Asensi M, Napoletano A, Sofi F, Dinu M. Low-Grade Inflammation and Ultra-Processed Foods Consumption: A Review. Nutrients. 2023 Mar 22;15(6):1546. doi: 10.3390/nu15061546.
- Cifuentes M, Verdejo HE, Castro PF, et al. Low-Grade Chronic Inflammation: a Shared Mechanism for Chronic Diseases. Physiology (Bethesda). 2025 Jan 1;40(1):0. doi: 10.1152/physiol.00021.2024.
- Ryabushko RM, Kostenko VO. Effects of NF-κB and Nrf2 modulators on reactive oxygen and nitrogen species production in rat hearts following surgical trauma under prolonged stress. Fiziol Zh. 2025;71(2):51-57. doi: 10.15407/fz71.02.051.
- Al-Makhamreh H, Alkhulaifat D, Al-Ani A, et al. The Impact of War-Related Stress on Coronary Artery Disease Severity in War Survivors: A SYNTAX Study. Int J Environ Res Public Health. 2021 Mar 21;18(6):3233. doi: 10.3390/ijerph18063233.
- Kuryata O, Akimov O, Denisenko S, et al. Chondroitin sulfate in osteoarthritis management among diabetic patients: molecular mechanisms and clinical potential. Romanian Journal of Diabetes Nutrition and Metabolic Diseases. 2023;30(4):481-493. doi: 10.46389/rjd-2023-1425.
- Golovach I, Rekalov D, Akimov OY, et al. Molecular mechanisms and potential applications of chondroitin sulphate in managing post-traumatic osteoarthritis. Reumatologia. 2023;61(5):395-407. doi: 10.5114/reum/172211.
- Frenkel Y, Cherno V, Kostenko V. Nrf2 Induction Alleviates Metabolic Disorder and Systemic Inflammatory Response in Rats under a Round-the-Clock Lighting and High-Carbohydrate-Lipid Diet. Romanian Journal of Diabetes Nutrition and Metabolic Diseases. 2022;29(2):194-201. doi: 10.46389/rjd-2022-1092.
- Frenkel YuD, Cherno VS, Kostenko VO. Effect of NF-κB and Nrf2 Transcription Factor Modulators on Indicators of Oxidative — Nitrosative Stress in Skeletal Muscles of Rats under Chronic Hypomelatoninemia and Carbohydrate-Lipid Diet. Fiziol Zh. 2023;69(2):11-18. doi: 10.15407/fz69.02.011.
- Zheng X, Zhu Y, Zhao Z, et al. The role of amino acid metabolism in inflammatory bowel disease and other inflammatory diseases. Front Immunol. 2023 Oct 23;14:1284133. doi: 10.3389/fimmu.2023.1284133.
- Yang L, Chu Z, Liu M, et al. Amino acid metabolism in immune cells: essential regulators of the effector functions, and promising opportunities to enhance cancer immunotherapy. J Hematol Oncol. 2023 Jun 5;16(1):59. doi: 10.1186/s13045-023-01453-1.
- Platten M, Nollen EAA, Röhrig UF, et al. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat Rev Drug Discov. 2019 May;18(5):379-401. doi: 10.1038/s41573-019-0016-5.
- Cervenka I, Agudelo LZ, Ruas JL. Kynurenines: Tryptophan’s metabolites in exercise, inflammation, and mental health. Science. 2017 Jul 28;357(6349):eaaf9794. doi: 10.1126/science.aaf9794.
- Grohmann U, Bronte V. Control of immune response by amino acid metabolism. Immunol Rev. 2010 Jul;236:243-64. doi: 10.1111/j.1600-065X.2010.00915.x.
- Kudo Y, Boyd CA. Characterisation of L-tryptophan transporters in human placenta: a comparison of brush border and basal membrane vesicles. J Physiol. 2001 Mar 1;531(Pt 2):405-416. doi: 10.1111/j.1469-7793.2001.0405i.x.
- Liu Y, Liang X, Dong W, et al. Tumor-Repopulating Cells Induce PD-1 Expression in CD8+ T Cells by Transferring Kynurenine and AhR Activation. Cancer Cell. 2018 Mar 12;33(3):480-494.e7. doi: 10.1016/j.ccell.2018.02.005.
- Du L, Xing Z, Tao B, et al. Both IDO1 and TDO contribute to the malignancy of gliomas via the Kyn-AhR-AQP4 signaling pathway. Signal Transduct Target Ther. 2020 Feb 21;5(1):10. doi: 10.1038/s41392-019-0103-4.
- Fiore A, Murray PJ. Tryptophan and indole metabolism in immune regulation. Curr Opin Immunol. 2021 Jun;70:7-14. doi: 10.1016/j.coi.2020.12.001.
- Opitz CA, Litzenburger UM, Sahm F, et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature. 2011 Oct 5;478(7368):197-203.
- Fallarino F, Grohmann U, Hwang KW, et al. Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol. 2003 Dec;4(12):1206-12. doi: 10.1038/ni1003.
- Bauer TM, Jiga LP, Chuang JJ, et al. Studying the immunosuppressive role of indoleamine 2,3-dioxygenase: tryptophan metabolites suppress rat allogeneic T-cell responses in vitro and in vivo. Transpl Int. 2005 Jan;18(1):95-100. doi: 10.1111/j.1432-2277.2004.00031.x.
- Byakwaga H, Boum Y 2nd, Huang Y, et al. The kynu–renine pathway of tryptophan catabolism, CD4+ T-cell recovery, and mortality among HIV-infected Ugandans initiating antiretroviral therapy. J Infect Dis. 2014 Aug 1;210(3):383-91. doi: 10.1093/infdis/jiu115.
- Dai X, Zhu BT. Suppression of T-cell response and prolongation of allograft survival in a rat model by tryptophan catabolites. Eur J Pharmacol. 2009 Mar 15;606(1-3):225-32. doi: 10.1016/j.ejphar.2008.12.053.
- Spittler A, Kurz K, Neurauter G, et al. Accelerated tryptophan degradation in trauma and sepsis patients is related to pro-inflammatory response and to the diminished in vitro response of monocytes. Pteridines. 2009;20(1):54-61. doi: 10.1515/pteridines.2009.20.1.54.
- Grohmann U, Puccetti P. The Coevolution of IDO1 and AhR in the Emergence of Regulatory T-Cells in Mammals. Front Immunol. 2015 Feb 12;6:58. doi: 10.3389/fimmu.2015.00058.
- Boasso A, Herbeuval JP, Hardy AW, et al. HIV inhibits CD4+ T-cell proliferation by inducing indoleamine 2,3-dioxygenase in plasmacytoid dendritic cells. Blood. 2007 Apr 15;109(8):3351-9. doi: 10.1182/blood-2006-07-034785.
- Chiarugi A, Rovida E, Dello Sbarba P, Moroni F. Tryptophan availability selectively limits NO-synthase induction in macrophages. J Leukoc Biol. 2003 Jan;73(1):172-7. doi: 10.1189/jlb.0502220.
- Harding HP, Novoa I, Zhang Y, et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell. 2000 Nov;6(5):1099-108. doi: 10.1016/s1097-2765(00)00108-8.
- Wang P, Xu Y, Zhang J, et al. The amino acid sensor general control nonderepressible 2 (GCN2) controls TH9 cells and allergic airway inflammation. J Allergy Clin Immunol. 2019 Oct;144(4):1091-1105. doi: 10.1016/j.jaci.2019.04.028.
- Rashidi A, Miska J, Lee-Chang C, et al. GCN2 is essential for CD8+ T cell survival and function in murine models of malignant glioma. Cancer Immunol Immunother. 2020 Jan;69(1):81-94. doi: 10.1007/s00262-019-02441-6.
- Zelante T, Iannitti RG, Cunha C, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 2013 Aug 22;39(2):372-385. doi: 10.1016/j.immuni.2013.08.003.
- Roth W, Zadeh K, Vekariya R, et al. Tryptophan Metabolism and Gut-Brain Homeostasis. Int J Mol Sci. 2021 Mar 15;22(6):2973. doi: 10.3390/ijms22062973.
- Meléndez-Oliva E, Martínez-Pozas O, Sinatti P, et al. Relationship Between the Gut Microbiome, Tryptophan-Derived Metabolites, and Osteoarthritis-Related Pain: A Systematic Review with Meta-Analysis. Nutrients. 2025 Jan 12;17(2):264. doi: 10.3390/nu17020264.
- Neumeister A. Tryptophan depletion, serotonin, and depression: where do we stand? Psychopharmacol Bull. 2003;37(4):99-115.
- Correia AS, Vale N. Tryptophan Metabolism in Depression: A Narrative Review with a Focus on Serotonin and Kynurenine Pathways. Int J Mol Sci. 2022 Jul 31;23(15):8493. doi: 10.3390/ijms23158493.
- Reininghaus EZ, Lenger M, Schönthaler EMD, et al. Changes in tryptophan breakdown associated with response to multimodal treatment in depression. Front Psychiatry. 2024 Jun 21;15:1380620. doi: 10.3389/fpsyt.2024.1380620.
- Tanaka M, Török N, Tóth F, et al. Co-Players in Chronic Pain: Neuroinflammation and the Tryptophan-Kynurenine Metabolic Pathway. Biomedicines. 2021;9(8):897. https://doi.org/10.3390/biomedicines9080897.
- Huang Y, Zhao M, Chen X, et al. Tryptophan Metabolism in Central Nervous System Diseases: Pathophysiology and Potential Therapeutic Strategies. Aging Dis. 2023 Jun 1;14(3):858-878. doi: 10.14336/AD.2022.0916.
- Navik U, Sheth VG, Khurana A, et al. Methionine as a double-edged sword in health and disease: Current perspective and future challenges. Ageing Res Rev. 2021 Dec;72:101500. doi: 10.1016/j.arr.2021.101500.
- Anstee QM, Day CP. S-adenosylmethionine (SAMe) therapy in liver disease: a review of current evidence and clinical utility. J Hepatol. 2012 Nov;57(5):1097-1109. doi: 10.1016/j.jhep.2012.04.041.
- Ramani K, Donoyan S, Tomasi ML, Park S. Role of methionine adenosyltransferase α2 and β phosphorylation and stabilization in human hepatic stellate cell trans-differentiation. J Cell Physiol. 2015 May;230(5):1075-1085. doi: 10.1002/jcp.24839.
- Shen W, Gao C, Cueto R, et al. Homocysteine-methionine cycle is a metabolic sensor system controlling methylation-regulated pathological signaling. Redox Biol. 2020 Jan;28:101322. doi: 10.1016/j.redox.2019.101322.
- Bae DH, Lane DJR, Jansson PJ, Richardson DR. The old and new biochemistry of polyamines. Biochim Biophys Acta Gen Subj. 2018 Sep;1862(9):2053-2068. doi: 10.1016/j.bbagen.2018.06.004.
- Ducker GS, Rabinowitz JD. One-Carbon Metabolism in Health and Disease. Cell Metab. 2017 Jan 10;25(1):27-42. doi: 10.1016/j.cmet.2016.08.009.
- Yu W, Wang Z, Zhang K, et al. One-Carbon Metabolism Supports S-Adenosylmethionine and Histone Methylation to Drive Inflammatory Macrophages. Mol Cell. 2019 Sep 19;75(6):1147-1160.e5. doi: 10.1016/j.molcel.2019.06.039.
- Bogdanović O, Lister R. DNA methylation and the preservation of cell identity. Curr Opin Genet Dev. 2017 Oct;46:9-14. doi: 10.1016/j.gde.2017.06.007.
- García-Román R, Salazar-González D, Rosas S, et al. The differential NF-kB modulation by S-adenosyl-L-methionine, N-acetylcysteine and quercetin on the promotion stage of chemical hepatocarcinogenesis. Free Radic Res. 2008 Apr;42(4):331-343. doi: 10.1080/10715760802005169.
- Wang Y, Feng S, Du Q, et al. The protective effects of methionine on nickel-induced oxidative stress via –NF-κB pathway in the kidneys of mice. Biol Trace Elem Res. 2024;1-11. doi: 10.1007/s12011-024-04408-w.
- Vijayan V, Khandelwal M, Manglani K, et al. Methionine down-regulates TLR4/MyD88/NF-κB signalling in osteoclast precursors to reduce bone loss during osteoporosis. Br J Pharmacol. 2014 Jan;171(1):107-121. doi: 10.1111/bph.12434.
- Li Z, Wang F, Liang B, et al. Methionine metabolism in chronic liver diseases: an update on molecular mechanism and therapeutic implication. Signal Transduct Target Ther. 2020 Dec 4;5(1):280. doi: 10.1038/s41392-020-00349-7.
- Kumar A, Pathak R, Palfrey HA, et al. High le–vels of dietary methionine improves sitagliptin-induced hepatoto–xicity by attenuating oxidative stress in hypercholesterolemic rats. Nutr Metab (Lond). 2020 Jan 6;17:2. doi: 10.1186/s12986-019-0422-z.
- Noureddin M, Sander-Struckmeier S, Mato JM. Early treatment efficacy of S-adenosylmethionine in patients with intrahepatic cholestasis: A systematic review. World J Hepatol. 2020 Feb 27;12(2):46-63. doi: 10.4254/wjh.v12.i2.46.
- Cooke D, Ouattara A, Ables GP. Dietary methionine restriction modulates renal response and attenuates kidney injury in mice. FASEB J. 2018 Feb;32(2):693-702. doi: 10.1096/fj.201700419R.
- Lamichhane S, Kemppainen E, Trošt K, et al. Circulating metabolites in progression to islet autoimmunity and type 1 diabetes. Diabetologia. 2019 Dec;62(12):2287-2297. doi: 10.1007/s00125-019-04980-0.
- Feng X, Chen Y, Zhao J, et al. Hydrogen sulfide from adipose tissue is a novel insulin resistance regulator. Biochem Biophys Res Commun. 2009 Feb 27;380(1):153-159. doi: 10.1016/j.bbrc.2009.01.059.
- Wanders D, Ghosh S, Stone KP, et al. Transcriptional impact of dietary methionine restriction on systemic inflammation: relevance to biomarkers of metabolic disease during aging. Biofactors. 2014 Jan–Feb;40(1):13-26. doi: 10.1002/biof.1111.
- Ichihara A, Koyama E. Transaminase of branched chain amino acids. I. Branched chain amino acids-alpha-ketoglutarate transaminase. J Biochem. 1966 Feb;59(2):160-169. doi: 10.1093/oxfordjournals.jbchem.a128277.
- Wolfson RL, Chantranupong L, Saxton RA, et al. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science. 2016 Jan 1;351(6268):43-48. doi: 10.1126/science.aab2674.
- Skaper SD, Molden DP, Seegmiller JE. Maple syrup urine disease: branched-chain amino acid concentrations and metabolism in cultured human lymphoblasts. Biochem Genet. 1976 Aug;14(7-8):527-539. doi: 10.1007/BF00485832.
- Calder PC. Branched-chain amino acids and immunity. J Nutr. 2006 Jan;136(Suppl 1):288S-93S. doi: 10.1093/jn/136.1.288S.
- Shafei MA, Flemban A, Daly C, et al. Differential expression of the BCAT isoforms between breast cancer subtypes. Breast Cancer. 2021 May;28(3):592-607. doi: 10.1007/s12282-020-01197-7.
- Yu D, Richardson NE, Green CL, et al. The adverse metabolic effects of branched-chain amino acids are mediated by isoleucine and valine. Cell Metab. 2021 May 4;33(5):905-922.e6. doi: 10.1016/j.cmet.2021.03.025.
- White PJ, McGarrah RW, Grimsrud PA, et al. The BCKDH Kinase and Phosphatase Integrate BCAA and Lipid Metabolism via Regulation of ATP-Citrate Lyase. Cell Metab. 2018 Jun 5;27(6):1281-1293.e7. doi: 10.1016/j.cmet.2018.04.015.
- Ma QX, Zhu WY, Lu XC et al. BCAA-BCKA axis regulates WAT browning through acetylation of PRDM16. Nat Metab. 2022 Jan;4(1):106-122. doi: 10.1038/s42255-021-00520-6.
- van den Berg EH, Flores-Guerrero JL, Gruppen EG, et al. Non-Alcoholic Fatty Liver Disease and Risk of Incident Type 2 Diabetes: Role of Circulating Branched-Chain Amino Acids. Nutrients. 2019 Mar 26;11(3):705. doi: 10.3390/nu11030705.
- Singh Tejavath A, Mathur A, Nathiya D, et al. Impact of Branched Chain Amino Acid on Muscle Mass, Muscle Strength, Physical Performance, Combined Survival, and Maintenance of Liver Function Changes in Laboratory and Prognostic Markers on Sarcopenic Patients With Liver Cirrhosis (BCAAS Study): A Randomized Clinical Trial. Front Nutr. 2021 Sep 22;8:715795. doi: 10.3389/fnut.2021.715795.
- Kumar MA, Bitla AR, Raju KV, et al. Branched chain amino acid profile in early chronic kidney disease. Saudi J Kidney Dis Transpl. 2012 Nov;23(6):1202-1207. doi: 10.4103/1319-2442.103560.
- Ma Z, Zhang R, Yuan D, et al. Association of branched-chain amino acids with major depressive disorder: A bidirectional Mendelian randomization study. J Affect Disord. 2025 Jun 15;379:467-472. doi: 10.1016/j.jad.2025.03.032.
- Koochakpoor G, Salari-Moghaddam A, Keshteli AH, et al. Dietary intake of branched-chain amino acids in relation to depression, anxiety and psychological distress. Nutr J. 2021 Jan 29;20(1):11. doi: 10.1186/s12937-021-00670-z.
- Dickerman RD, Williamson J, Mathew E, et al. Branched-Chain Amino Acids Are Neuroprotective Against Traumatic Brain Injury and Enhance Rate of Recovery: Prophylactic Role for Contact Sports and Emergent Use. Neurotrauma Rep. 2022 Aug 16;3(1):321-332. doi: 10.1089/neur.2022.0031.
- Matthews DE. Review of Lysine Metabolism with a Focus on Humans. J Nutr. 2020 Oct 1;150(Suppl 1):2548S-2555S. doi: 10.1093/jn/nxaa224.
- Elango R, Ball RO, Pencharz PB. Recent advan–ces in determining protein and amino acid requirements in humans. Br J Nutr. 2012 Aug;108(Suppl 2):S22-30. doi: 10.1017/S0007114512002504.
- Tan Y, Chrysopoulou M, Rinschen MM. Integrative physiology of lysine metabolites. Physiol Genomics. 2023 Dec 1;55(12):579-586. doi: 10.1152/physiolgeno–mics.00061.2023.
- Rinschen MM, Palygin O, El-Meanawy A, et al. Accelerated lysine metabolism conveys kidney protection in salt-sensitive hypertension. Nat Commun. 2022 Jul 14;13(1):4099. doi: 10.1038/s41467-022-31670-0.
- McMahon GM, Hwang SJ, Clish CB, et al. Urinary metabolites along with common and rare genetic variations are associated with incident chronic kidney disease. Kidney Int. 2017 Jun;91(6):1426-1435. doi: 10.1016/j.kint.2017.01.007.
- Jozi F, Kheiripour N, Taheri MA, et al. L-Lysine Ameliorates Diabetic Nephropathy in Rats with Streptozotocin-Induced Diabetes Mellitus. Biomed Res Int. 2022 Sep 12;2022:4547312. doi: 10.1155/2022/4547312.
- Kalogeropoulou D, LaFave L, Schweim K, et al. Lysine ingestion markedly attenuates the glucose response to ingested glucose without a change in insulin response. Am J Clin Nutr. 2009 Aug;90(2):314-320. doi: 10.3945/ajcn.2008.27381.
- Cheng J, Tang JC, Pan MX, et al. L-lysine confers neuroprotection by suppressing inflammatory response via microRNA-575/PTEN signaling after mouse intracerebral hemorrhage injury. Exp Neurol. 2020 May;327:113214. doi: 10.1016/j.expneurol.2020.113214.
- Pedrazini MC, da Silva MH, Groppo FC. L-lysine: Its antagonism with L-arginine in controlling viral infection. Narrative literature review. Br J Clin Pharmacol. 2022 Nov;88(11):4708-4723. doi: 10.1111/bcp.15444.
- Severyanova LA, Lazarenko VA, Plotnikov DV, et al. L-Lysine as the Molecule Influencing Selective Brain Acti–vity in Pain-Induced Behavior of Rats. Int J Mol Sci. 2019 Apr 17;20(8):1899. doi: 10.3390/ijms20081899.
- Smriga M, Torii K. L-Lysine acts like a partial serotonin receptor 4 antagonist and inhibits serotonin-mediated intestinal pathologies and anxiety in rats. Proc Natl Acad Sci USA. 2003 Dec 23;100(26):15370-15375. doi: 10.1073/pnas.2436556100.
- Russell AL, McCarty MF. DL-phenylalanine mar–kedly potentiates opiate analgesia — an example of nut–rient/pharmaceutical up-regulation of the endogenous anal–gesia system. Med Hypotheses. 2000 Oct;55(4):283-288. doi: 10.1054/mehy.1999.1031.
- Chen TJ, Blum K, Payte JT, et al. Narcotic antagonists in drug dependence: pilot study showing enhancement of compliance with SYN-10, amino-acid precursors and enkephalinase inhibition therapy. Med Hypotheses. 2004;63(3):538-548. doi: 10.1016/j.mehy.2004.02.051.
- Casale R, Symeonidou Z, Ferfeli S, et al. Food for Special Medical Purposes and Nutraceuticals for Pain: A Narrative Review. Pain Ther. 2021 Jun;10(1):225-242. doi: 10.1007/s40122-021-00239-y.
- Tang Q, Tan P, Ma N, Ma X. Physiological Functions of Threonine in Animals: Beyond Nutrition Metabolism. Nutrients. 2021;13(8):2592. https://doi.org/10.3390/nu13082592.
- An JM, Kang EA, Han YM, et al. Dietary threonine prevented stress-related mucosal diseases in rats. J Physiol Pharmacol. 2019 Jun;70(3). doi: 10.26402/jpp.2019.3.14.
- Fath MK, Naderi M, Hamzavi H, et al. Molecular mechanisms and therapeutic effects of different vitamins and minerals in COVID-19 patients. J Trace Elem Med Biol. 2022 Sep;73:127044. doi: 10.1016/j.jtemb.2022.127044.
- Kozaeva R, Klymenko MO, Katrushov OV, Kostenko VO. Bioflavonoids as agents for correcting nitro-oxidative stress and salivary gland functions in rats exposed to alcohol during modeled lipopolysaccharide-induced systemic inflammatory response. Wiad Lek. 2022;75(3):685-690. doi: 10.36740/WLek202203121.
- Kostenko V, Akimov O, Gutnik O, et al. Modulation of redox-sensitive transcription factors with polyphenols as pathogenetically grounded approach in therapy of systemic inflammatory response. Heliyon. 2023 Apr 16;9(5):e15551. doi: 10.1016/j.heliyon.2023.e15551.
- Frenkel Y, Cherno V, Kostenko H, et al. Dietary Supplementation with Resveratrol Attenuates Serum Melatonin Level, Pro-Inflammatory Response and Metabolic Disorder in Rats Fed High-Fructose High-Lipid Diet under Round-the-Clock Lighting. Pathophysiology. 2023 Feb 19;30(1):37-47. doi: 10.3390/pathophysiology30010005.
- Opryshko V, Prokhach A, Akimov O, et al. Desmodium styracifolium: Botanical and ethnopharmacological insights, phytochemical investigations, and prospects in pharmacology and pharmacotherapy. Heliyon. 2024 Jan 20;10(3):e25058. doi: 10.1016/j.heliyon.2024.e25058.
- Nagy L, Hiripi L. Role of tyrosine, DOPA and decarboxylase enzymes in the synthesis of monoamines in the brain of the locust. Neurochem Int. 2002 Jul;41(1):9-16. doi: 10.1016/s0197-0186(01)00141-3.
- Stach K, Stach W, Augoff K. Vitamin B6 in Health and Disease. Nutrients. 2021 Sep 17;13(9):3229. doi: 10.3390/nu13093229.
- Hrubša M, Siatka T, Nejmanová I, et al. Biological Properties of Vitamins of the B-Complex, Part 1: Vitamins B1, B2, B3, and B5. Nutrients. 2022 Jan 22;14(3):484. doi: 10.3390/nu14030484.
- Wang Y, Zhao X, Ma Y, et al. The effects of vitamin B6 on the nutritional support of BCAAs-enriched amino acids formula in rats with partial gastrectomy. Clin Nutr. 2023 Jun;42(6):954-961. doi: 10.1016/j.clnu.2023.04.018.
- Bottiglieri T. Folate, vitamin B12, and S-adenosylmethionine. Psychiatr Clin North Am. 2013 Mar;36(1):1-13. doi: 10.1016/j.psc.2012.12.001.
- Yoshimura T. Molecular basis and functional development of enzymes related to amino acid metabolism. Biosci Biotechnol Biochem. 2022 Aug 24;86(9):1161-1172. doi: 10.1093/bbb/zbac102.
