Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.

Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.



СІМЕЙНІ ЛІКАРІ ТА ТЕРАПЕВТИ

НЕВРОЛОГИ, НЕЙРОХІРУРГИ, ЛІКАРІ ЗАГАЛЬНОЇ ПРАКТИКИ, СІМЕЙНІ ЛІКАРІ

КАРДІОЛОГИ, СІМЕЙНІ ЛІКАРІ, РЕВМАТОЛОГИ, НЕВРОЛОГИ, ЕНДОКРИНОЛОГИ

СТОМАТОЛОГИ

ІНФЕКЦІОНІСТИ, СІМЕЙНІ ЛІКАРІ, ПЕДІАТРИ, ГАСТРОЕНТЕРОЛОГИ, ГЕПАТОЛОГИ

ТРАВМАТОЛОГИ

ОНКОЛОГИ, (ОНКО-ГЕМАТОЛОГИ, ХІМІОТЕРАПЕВТИ, МАМОЛОГИ, ОНКО-ХІРУРГИ)

ЕНДОКРИНОЛОГИ, СІМЕЙНІ ЛІКАРІ, ПЕДІАТРИ, КАРДІОЛОГИ ТА ІНШІ СПЕЦІАЛІСТИ

ПЕДІАТРИ ТА СІМЕЙНІ ЛІКАРІ

АНЕСТЕЗІОЛОГИ, ХІРУРГИ

"Тrauma" Том 22, №3, 2021

Back to issue

Investigation of the effect of porous titanium cups on stress distribution in bone tissue (mathematical modeling)

Authors: Бондаренко С.Є., Денисенко С.А., Карпінський М.Ю., Яресько О.В.
ДУ «Інститут патології хребта та суглобів ім. проф. М.І. Ситенка НАМН України», м. Харків, Україна

Categories: Traumatology and orthopedics

Sections: Clinical researches

print version


Summary

Актуальність. При ендопротезуванні в пацієнтів зі зміненою анатомією та наявністю остеопорозу кульшової западини дуже складним завданням є стабільна фіксація ацетабулярного компонента ендопротеза. Існують дослідження з вивчення зчеплення кісткової тканини з титановими, танталовими та керамічними покриттями ендопротезів. Проте недостатньо даних щодо впливу міцнісних характеристик сучасних поверхонь чашок ендопротезів кульшового суглоба на розподіл механічних напружень у кістковій тканині навколо імплантованих компонентів. Мета роботи: вивчити на математичній моделі зміни напружено-деформованого стану системи «ендопротез — кістка» в результаті використання чашки ендопротеза з пористого титану. Матеріали та методи. Проведене математичне моделювання напружено-деформованого стану кульшового суглоба людини при ендопротезуванні з використанням чашки з пористих матеріалів. Під час дослідження моделювали дефект покрівлі вертлюжної западини, заповнений кістковим імплантатом, фіксованим двома гвинтами, та дефект дна вертлюжної западини, заповнений кістковими чипсами. Чашки ендопротеза моделювали у двох варіантах: із цільного титану з напиленням шару з пористого титану; цілком із пористого титану. До крижі прикладали розподілене навантаження величиною 540 Н. Між крилом таза та великим вертлюгом стегнової кістки прикладали навантаження, що моделювали дію середнього сідничного м’яза — 1150 Н та малого сідничного м’яза — 50 Н. Результати. Використання чашки з напиленням пористого титану при нормальному стані вертлюжної западини призводить до виникнення напружень максимальної величини (15,9 МПа) в її задньоверхній частині. Мінімальні напруження (4,6 МПа) спостерігаються в центрі вертлюжної западини. Використання ендопротеза з чашкою з пористого титану дозволяє знизити рівень напружень у кістковій тканині навколо чашки. За наявності дефекту покрівлі вертлюжної западини ендопротез кульшового суглоба з чашкою з пористого титану викликає напруження меншої величини, ніж чашка із цільного титану з напиленням пористого титану. Але на трансплантаті рівень напружень залишається практично незмінним незалежно від типу чашки. Використання чашки з пористого титану за наявності дефекту дна вертлюжної западини викликає значно менші напруження в кістковій тканині навколо неї порівняно із цільнометалевою чашкою з напиленням. Висновки. Чашка ендопротезу кульшового суглоба, виготовлена з пористого титану, викликає значно нижче напруження у всіх контрольних точках моделі порівняно з чашкою із цільного титану з напиленням пористого як за наявності дефектів покрівлі та дна вертлюжної западини, так і без них.

Introduction. During arthroplasty in patients with altered anatomy and osteoporosis of the acetabulum, stable fixation of the acetabular component of the endoprosthesis is a very difficult task. There are studies on the bone tissue bonding to titanium, tantalum and ceramic coatings of endoprostheses. However, there are insufficient data on the influence of the strength characteristics of modern surfaces of the cups for hip endoprostheses on the distribution of mechanical stresses in the bone tissue around the implanted components. The purpose was to study on a mathematical model the changes in the stress-strain state of the endoprosthesis-bone system as a result of using porous tantalum cup. Materials and methods. A mathematical modeling has been carried out of the stress-strain state of the human hip joint in arthroplasty with porous cup. Du-ring the study, a defect in the acetabular roof filled with a bone implant fixed with two screws was simulated, as well as a defect in the acetabular floor filled with bone “chips”. Endoprosthesis cups were modeled in two versions: from solid titanium with a spray coating of porous titanium, and those entirely made of porous titanium. A distributed load of 540 N was applied to the sacrum. A load was applied between the iliac wing and the greater trochanter of the femur simulating the action of the gluteus medius — 1150 N and the gluteus minimus — 50 N. Results. The use of a cup with a coating of porous titanium in the normal state of the acetabulum leads to the occurrence of maximum stresses (15.9 MPa) in its posterior-upper part. Minimum stresses of 4.6 MPa are observed in the center of the acetabulum. The use of an endoprosthesis with porous titanium cup allows reducing the level of stresses in the bone tissue around the cup. If there is a defect in the acetabular roof, a hip endoprosthesis with porous titanium cup causes less stress than a solid titanium cup with coating of porous titanium. But on the graft, the stress level remains practically unchanged, regardless of the type of cup. The use of porous tantalum cup in the presence of a defect in the acetabular floor causes significantly less stress in the bone tissue around it, compared to an all-metal cup with coating. Conclusions. The cup of the hip endoprosthesis made of porous titanium causes significantly less stress in all control points of the model, compared to a cup made of solid titanium with coating of porous titanium, both with defects in the acetabular roof and floor, and without bone defects.


Keywords

ендопротез; чашка; кульшовий суглоб; математична модель; напруження

endoprosthesis; cup; hip joint; mathematical model; tension


For the full article you need to subscribe to the magazine.


Bibliography

1. Корж Н.А., Филиппенко В.А., Танькут В.А. и др. Применение чашки эндопротеза тазобедренного сустава с танталовым покрытием при дефектах стенок вертлужной впадины и остеопорозе. Мат. IX съезда травматологов-ортопедов Республики Беларусь. Мн., 2014. С. 260-266.
2. Олійник О.Є. Ендопротезування кульшового суглоба при деформаціях та дефектах проксимального відділу стегнової кістки і кульшової западини: Автореф. дис... д-ра мед. наук: 14.01.21/О.Є.Олійник; Ін-т патології хребта та суглобів ім. М.І. Ситенка АМН України. Х., 2011. 36 с.
3. Лоскутов А.Е. и др. Эндопротезирование тазобедренного сустава: Монография; под ред. лауреата Гос. премии, засл. деят. науки и техники Украины, проф. А.Е. Лоскутова. Д.: Лира, 2010. 344 с.
4. Филиппенко В.А., Хмызов С.А., Жигун А.И. и др. Особенности эндопротезирования пациентов с последствиями невправленных переломовывихов в тазобедренном суставе. Вісник ортопедії, травматології та протезування. 2015. № 2. С. 28-33.
5. Филипенко В.А. и др. Эндопротезирование тазобедренного сустава: Монография; под ред. В.А. Филиппенко, Н.А. Коржа. Х.: Колегіум, 2015. 220 с.
6. Biemond J.E., Hannink G., Jurrius A.M. et al. In vivo assessment of bone ingrowth potential of three-dimensional e-beam produced implant surfaces and the effect of additional treatment by acid etching and hydroxyapatite coating. J. Biomater. Appl. 2012. № 26(7). P. 861-875. 
7. Biemond J.E., Eufrásio T.S., Hannink G. et al. Assessment of bone ingrowth potential of biomimetic hydroxyapatite and brushite coated porous E-beam structures. J. Mater. Sci. Mater. Med. 2011. № 22(4). P. 917-925.
8. Kusakabe H., Sakamaki T., Nihei K. et al. Osseointegration of a hydroxyapatite-coated multilayered mesh stem. Biomaterials. 2004. № 25(15). P. 2957-2969.
9. Manders P.J., Wolke J.G., Jansen J.A. Bone response adjacent to calcium phosphate electrostatic spray deposition coated implants: an experimental study in goats. Clin. Oral Implants Res. 2006. № 17(5). P. 548-553.
10. Karageorgiou V., Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005. № 26(27). P. 5474-5491.
11. Bone-Implant Interface in Orthopedic Surgery: Basic Science to Clinical Applications. Ed. by Karachalios, Theofilos. Springer-Verlag London, 2014. 342 p.
12. Руцкий А.В., Минченя В.Т., Маслов А.П. Оценки объемной пористой титановой структуры в эндопротезах тазобедренного сустава SLPS. Ars medica. 2011. № 17(53). С. 25-30.
13. Baad-Hansen T., Kold S., Nielsen P.T. et al. Comparison of trabecular metal cups and titanium fiber-mesh cups in primary hip arthroplasty: a randomized RSA and bone mineral densitometry study of 50 hips. Acta Orthop. 2011. № 82(2). P. 155-160.
14. Bobyn J.D., Stackpool G.J., Hacking S.A.et al. Cha-racteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. J. Bone Joint Surg. Br. 1999. №  81(5). P. 907-914. 
15. Bobyn J.D., Poggie R.A., Krygier J.J. et al. Clinical validation of a structural porous tantalum biomaterial for adult reconstruction. Ibid. 2004. Vol. 86-A. S.2. P. 123-129.
16. Гайко Г.В., Підгаєцький В.М. Пористе титанове та титан-гідроксилапатитне покриття для безцементного ендопротеза кульшового суглоба. Ортопедия, травматология и протезирование. 2008. № 4. С. 47-53.
17. Moroni et al. A Comparison of Hydroxyapatite-Coated, Titanium-Coated, and Uncoated Tapered External-Fixation Pins. An in Vivo Study in Sheep. J. Bone Joint Surg. Am. 1998. № 80. P. 547-554.
18. Bone mechanics handbook. Ed. by Stephen C. Cowin. CRC Press Reference, 2001. 980 р.
19. Boccaccio A., Pappalettere C. Mechanobiology of Fracture Healing: Basic Principles and Applications in Orthodontics and Orthopaedics. Theoretical Biomechanics. Dr Vaclav Klika (ed.). 2011.
20. Філіпенко В.А., Мезенцев В.О., Карпінський М.Ю., Карпінська О.Д. Експериментальне дослідження механічних властивостей матеріалів у вигляді гранул та чипсів для заповнення кісткових дефектів. Травма. 2020. Т. 21. № 1. С. 23-30. doi: 10.22141/1608-1706.1.21.2020.197795.
21. Mitsuo Niinomi. Mechanical biocompatibilities of titanium alloys for biomedical applications. Journal of the mecha-nical behavior of biomedical materials. 2008. 1. Р. 30-42. doi: 10.1016/j.jmbbm.2007.07.001.
22. Regis M., Marin E., Fedrizzi L., Pressacco M. Additive manufacturing of Trabecular Titanium orthopedic implants. MRS BULLETIN. Feb 2015. Vol. 40. doi: 10.1557/mrs.2015.1.
23. Карпинский М.Ю., Суббота И.А., Карпинская Е.Д., Попов А.И. Экспериментально-теоретическое обоснование состава композитного материала для заполнения костных дефектов. Медицина и..., 2008. № 3(21).
24. Хвисюк О.М., Павлов О.Д., Карпінський М.Ю., Карпінська О.Д. Розрахунок міцнісних характеристик композитного матеріалу на основі полілактиду трикальційфосфату та гідроксіапатиту. Травма. 2020. Т. 21. № 1. Р. 85-91. doi: 10.22141/1608-1706.1.21.2020.197802.
25. Образцов И.Ф., Адамович И.С., Барер И.С. и др. Проблема прочности в биомеханике: Учебное пособие для технич. и биол. спец. вузов. М.: Высш. школа, 1988. 311 с.
26. Carhart M.R. Biomechanical Analysis of Compensatory Stepping: Implications for Paraplegics Standing Via FNS: Ph.D. Dissertation. Arizona State University, 2000.
27. Зенкевич О.К. Метод конечных элементов в технике. М.: Мир, 1978. 519 с.
28. Алямовский А.А. SolidWorks/COSMOSWorks. Инженерный анализ методом конечных элементов. М.: ДМК Пресс, 2004. 432 с.

Back to issue